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Abstract: A microstructural constitutive theory of  ER suspensions was formulated in this 

investigation. The framework was based on the internal variable theory and the mechanism 

analysis. The ER suspension consists of  fine particles with high dielectric constant and the 

supporting fluid. Under the action of the electric f ield,  the polarized particles will 

aggregate together to form the chain-like structures along the direction of  the electric field. 

As the size and orientation of the particle aggregates are volatile, and they adjust according 

to the applied electric field and strain rate, the energy conservation equation and the force 

eq~librium equation were thus established to determine the orientation and size of  the 

aggregates. Following that, a three-dimensional, explicit form of the constitutive equation 

was derived based on the interaction energy and the dissipation function of the system. The 

response of  the .system under the action of a simple shearing load was considered and 

discussed in detail. It is found that the shear-thinning viscosity of  an ER suspension is well 

approximated by the power-law oc (Mn)  -0.82 . 
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Introduction 

An electrorheological fluid ( E R )  consists of a suspension of the dielectric particles in a 

liquid of low dielectric constant and low viscosity. Its apparent viscosity increases dramatically in 

the presence of an applied electric field. The phenomenon is reversible. Upon electric field 

cutoff, the system almost immediately resumes its original liquid state. These novel properties 

make ER fluids very atlraetive for many futuristic technologies. Recently they are also used as the 

components in some smart structures. It is now clear that the underling mechanism for the 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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transition is that the polarized particles in ER fluid will form the chain structures along the 

direction of the applied electric field. A lot of works has been done to understand the mechanism 

of the chain formation, such as, Tao (1993) [1] , Parthasarathy and Klingenberg (1996) P'] . 

The macroscopic response of an ER suspension depends strongly on the applied electric field 

and its microstructural parameters, such as the volume fraction and dielectric constants of the 

particles. In order to reveal the relationship between the macroscopic response of an ER system 

and its rnicrostructures, a constitutive equation should be established. This equation can also 

provide engineers the necessary tool to carry out FEM analysis for a structure with ER systems as 

its components. Many researchers have done some fruitful investigations on the constitutive 

relation under the simple shear load. To name a few, Halsey et al. (1992)  [3,4] proposed a 

stimulating model to predict the shear-thinning viscosity of the fluid. Based on the continuum 

concept of unsymmetric stress states, Rosensweig (1995) [5] developed an efficient method to 

obtain the general expressions for the yielding stress of magnetorheological fluid. Klingenberg and 

Zukoski (1990)  [61 first considered a model ER suspension with an idealized structure. They 

calculated the elastic behavior under simple shearing deformation. Bonnecaze and Brady 

(1992)~7, 8] developed a molecular dynamics-like simulation method to efficiently compute the 

electrostatic interactions in suspensions with arbitrary particle configuration under the action of an 

electric field and a flow field. Ginder and Ceccio (1995) [9] and Conrad et al. (1992) [1~ carded 

out extensive theoretical and experimental investigation on the yield strength of ER systems. 

Based on the energy consideration, Bossis et al. ( 1 9 9 7 )  [11] predicted the yield stress in 

magnetorheological and electrorheological fluids. Martin and Odinek (1995)[12] developed a non- 

linear rheological model of an ER system by considering the response of a fragmenting and 

aggregating particle chain to the prevailing hydrodynamic and electrostatic forces. 

In fact, the response of an ER suspension is quite different in the different stage of the 

applied strain rate. For quasi-static loading, the chain structure will not break down when the 

strain is small. The particles will move a very limited distance in response to the applied strain. 

Under such kind of loading, the stress is related with the applied strain, not with the strain rate. 

The stress-strain relations obtained by many researchers are the most suitable for this stage. For 

dynamic loading, or when the strain rate is high, the chain structure becomes volatile whose size 

adjusts in response to the flow, fragmenting and aggregating. As the shear strain rate increases or 

decreases, its orientation also adjusts in response to the flow. Such microstructuml evolution will 

induce further energy dissipation, and constitute the main reason for the shear-thinning 

phenomena. In this stage of loading, the stress is related with the strain rate, instead of the 

strain. As pointed out by Jordan et al. (1997) [13] , to develop the constitutive equation for ER 

fluid, two approaches can be followed. Namely, one is based on detailed rnicrostructnral electro- 

hydrodynamics, while the other is based on continuum mechanics. The former has been 

successful in elucidating interrelations of system variables, but it has failed to generate closed 

form constitutive equations. Continuum mechanics based models, on the other hand, lack 

detailed microstructural information. In the current investigation, we attempt to establish a three- 

dimensional constitutive equation based on the internal variable theory (Rice, 1971 [I4] ; Ziegler, 

1983115]). Starting with the microstructurai consideration, the interaction energy and the 

dissipated energy under the action of an electric field and a flow field will be derived first. Then 
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the evolution equations of the internal variables, such as the orientation and size of the aggregates 

will be established. At last, the three-dimensional constitutive relation is obtained in the 

framework of the internal variable theory. The mechanism-based constitutive model obtained in 

the current research not only provides engineer the closed form equation to run FEM, but also 

estabfishes the relationship between the macroscopic response and their microstructures of ER 

suspensions. 

1 The Interact ion Energy of an ER Suspens ion Containing the Aggregates 
of Polarized P a r t i c l e s  

It is a well-known fact that the rheology of ER suspensions at low to moderate volume 

fractions is due to the aggregation of particles into volatile chainlike structures whose size and 

orientation adjust in response to the flow and applied electric field. The electrodes as the boundary 

of the system have a very strong image effect on the aggregation process of polarized particles 

when the size of the aggregates approaches to the distance between the electrodes. In establishing 

the microstrnctural constitutive relation of a material, a constitutive element is usually taken as the 

subject of study. From a macroscopic view, the element should be small enough to represent the 

behavior of  one point in the material, whereas from a microscopic view, the element should be 

large enough to contain sufficient microstructural information. Therefore, an ER suspension 

confined by the electrodes can be considered to be piled up by a large number of such elements, 

each of which may have different response due to the effect of non-uniform applied electric and 

flow field. Thus in establishing the constitutive relation of the material, the image effect of the 

electrodes should not be taken into consideration. The material element we consider is assumed as 

a suspension of the spheroidal aggregates of polarized particles in a fluid. This assumption will 

simplify our analysis since the polarization is constant inside an ellipsoid placed in a constant 

external field. Similar assumptions can be easily found in literature, such as Halsey, et a l . ,  

1992 [3'41 , Bossis, et a l . ,  1997 [11] , etc. The element is subjected to an applied electric field E 0 

along the z-direction, and a general flow velocity field V ~ . If  the size of  a spheroidal aggregate is 

denoted by a I = a ,  a 2 = a3 = c ,  it '  s volume is given by v, = ( 4 / 3 ) r r a e  2. In unit volume of 

the ER suspension with the volume fraction ~ of the particles, the number of the aggregates in 

unit volume is given by N = ~ / v , .  The aggregate consists of the dielectric particles with the 

isotropic, relative permittivity a p, whereas, the fluid has a lower relative dielectric permittivity 

a f. When the suspension system is subjected to an applied electric field, the interaction 

depolarization energy due to the introduction of the dielectric aggregates can be obtained after 

determining the distribution of the electric field. In what follows, we will derive the electrostatic 

energy in unit volume. 

We first consider a single prolate spheroid aggregate in the fluid. To incorporate the effect of 

the other aggregates, the concept of the effective field E m is introduced, which is defined as the 

volume average field in the surrounding fluid. In the local coordinate system where X ,  Y and Z 

axes are connected with the semi-axes a 1 , a z ,  a 3 ( a  2 = a3 = c )  of the spheroid, the electric 

field inside the aggregate is related with the effective field similar to single dielectric inclusion 

problem (Landau et a l . ,  1984 [16] , Eringen and MaugJn, 1990117]), 
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wheren .  1 - f l 2 ( t n l  + ~ - 2 f l )  
= 2fl 3 ~ 1 - , _  

n z  

If  the applied electric field is denoted 

electric field as follows: 

(1  - ~ ) E  m + ~ E  i = E ~ ( 2 )  

Substitution of Eq. (1) into Eq. (2)  gives the effective electric field as follows: 

E 7 = ( 1 -  r + r ~ 
m ----. Ey ( 1  ~ + ~Ay)- lE~ 

E~' = (1 - ~ + ~Az)-lE~ (3) 

The total induced dipole moment in a spheroid aggregate is thus given by 

{P~ = %A.~(a p a f ) a 0 ( 1  r + ~A~ - 1  0 - - ) E ~ ,  

- 1  0 Py %Ay(a" af )a0(1  r + r Ey, (4) 

- 1  0 P, v,A~(a p a f )a0 (1  r + CA,) E~, 

where a0 is the dielectric permittivity of the vacuum, and v~ is the volume of the ellipsoidal 

aggregate. 

The interaction energy of a single aggregate is defined as the electrostatic energy change due 

to the introduction of one aggregate into the fluid, and is given by Landau, et al. (1984) [16] 
'~ 0 9 

u = - 0 . 5 E m - p  = - 0 . 5 v . a o ( a  p - a f ) [ A ~ ( 1  - r + CA,~)--(E.~)- + 

A,,(1 - r + r176 2 + A,(1 - r + C A , ) - : ( E ~  (5) 

The energy of the ER suspension can be considered to consist of  two parts : one is the bulk 

depolarization energy of the dielectric aggregates, the other part is the surface energy of the 

aggregates. As pointed out by Halsey et al. (1992) [3] , the surface energy arises also from the 

dipole interaction, but it should depend on the lattice constant of  the aggregates. Bossis et al. 

(1993) [18] also pointed out that the origin of the surface energy was the difference between the 

local field on a particle situated on the surface of an aggregate relatively to the local field on a 

particle situated inside the aggregate. As a result, the surface energy is much smaller than the 

bulk depolarization energy. To simplify the analysis, we neglect the surface energy in this paper 

as the majority of previous investigations did. 

In unit volume there are N aggregates, therefore the total interaction energy can be written as 

= Nu = - 0 . 5 r  p - a f ) a o [ A x ( 1  - r + r176 2 + 

Ay(1 - r + C A r ) - 2 (  0 ~ _ E y ) -  + A,(1 r + CA~)-2(E~ 23 (6) 

For our problem, the applied electric field E ~ is along the z-axis of  the global coordinate 

system. In the local coordinate system, ( X ,  Y, Z )  axes are connected with the semi-axes a 1 , 

a2, a3, which can be specified as follows: X is the symmetric axis ,  and Z lies in the ( x ,  y )  

plane of the global coordinate system. Thus, the components of the applied electric field in the 

local coordinate system can be expressed in the form as 

{ Ei~ = E~'/(1 + (crP/a f - 1)n~) = A~E~, 

Ei). E)~,/(1 + ( a P / a  f -  1 ) n y )  AyE,~,, (1) 

Ei~ Em/(1 + (aP/a f -  1)n~) A,E~, 

= ,~y = � 8 9  - n ~ ) ,  and  fl = ",/1 - c 2 / a  2 , 

as E 0, it should be equal to the volume average of the 
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i olE sin0cos  sin0sin  cos  l{:} 
E ~ = - cos0 cos 9 - cos0 sin 9 sin0 , (7) 

E o J sin 9 - cos 9 0 E ~ 

where 0 is the angle between the symmetric axes X and z ,  and 9 is the angle between the 

projection of X onto the plane ( x ,  y )  and axis x.  

By substituting Eq. (7)  into Eq. ( 6 ) ,  and noting Ay = A, for spheroidal aggregates, one 

obtains the interaction energy 

ff~" = - 0 . 5 r  o -  a f )ao (  E~ A.~(1 - ~ + ~A~)-ZeosZO + 

Ay(1 - r + eAy)-Zsin~01. (8) 

It is very clear that the specific interaction energy of the suspension system depends on the 

applied electric field, the orientation, size, and volume fraction of the aggregates. Further, the 

interaction energy is not the linear function of the volume fraction of the particles since we 

introduced the concept of the effective field to consider the interaction effects among the 

aggregates. 

2 The Diss ipation Potential  of ER Suspensions  Subjected to Microstructure 
Evolution 

To establish the constitutive relation of the suspensions, one needs first to derive the 

dissipation potential corresponding to the microstructural evolution. The dissipation potential is 

defined as the dissipated energy in unit volume and unit time. In the current model, the 

suspension element is subjected to an electric field E ~ along the z-direction, and a linear flow 

velocity field V ~ , ( i .  e. a constant strain rate field),  The orientation of the aggregates changes 

with the velocity 0 ,  9-  The size of the aggregates also adjusts in response to the flow and electric 

field. If  the translation velocity of the ith aggregate center is denoted as Ui, which is assumed to 

be the same as the flow velocity of the fluid at that point ,  the velocity of  the fluid adhering to the 

particle surfaces can be written as follows: 

V i = U i + co  i x r i ,  on each Si ,  (9) 

where co i refers to the angular velocity of the ith aggregate, which can be expressed in terms of 

O, 9 ; r~ denotes the position vector drawn from the center of the aggregate, and S~ is the surface 

of the ith aggregate. Without the aggregates, the flow field of the fluid is given by 

V ~ = Ui + ~ o .  ri ' (10) 

where ~0 is the applied strain rate tensor. 

For quasi-static creeping flows in the absence of external body forces, the kinetic energy of 

the fluid-particle system is negligible and the potential energy of the fluid remains constant. 

Accordingly, the rate �9 at which energy is being dissipated within the conffmes of the apparatus is 

equal to the rate of work done by the stresses over all the surfaces bounding the fluid. In general, 

this overall surface includes both the apparatus boundaries and the particle surfaces. Hence, 

= f f  ,~ I'lljVinjds (11) 
JJS0+ ~ Sp 

where So, Sp are the surfaces of the material element and the spheroid aggregates, Vz is the 
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velocity vector of the fluid on the surface, nj is the normal vector of the surfaces, which is 

directed outward the fluid, and 1I 0 is the stress tensor. For Newtonian fluids, it can be expressed 

in the form as 

II~i = - P~i + fz(gY~ + 3iVy), (12) 

in which p is the hydrostatic pressure, and ,u is the shear viscosity of the fluid. 

By using the condition V i = V ~ on the element surface So, Eq. ( 11 ) can be expressed in the 

form as 

�9 .,rJ so-,- : f f  .,. j-f = ~sp I Iq (V~-  V~ (13) 

By introducing the stress tensor 1I ~ corresponding to the applied flow field V ~ in the homogeneous 

fluid without particles, the reciprocal theorem (Happel and Brenner, 1986) Ng] gives 

f f  Iliy~ = f f  1-l~ (14) 
So+ Y] s So+ ~, s 

The above relationship is used to replace the first integral in F_q. (13 ) ,  and by using the boundary 

condition again, F_q. (13) becomes 

= = IIi.iV~nids + 
s o + S~, sp s ~ 

f [  I'l~ ; f ~ s p l - l o ( V i -  V~ (15) 

The second integral vanishes when the inertia effects and body force are absent since 3fir/~ = 0. 

Therefore, the energy dissipation rate can be expressed in the form as 

f f  o o f f  IIii( V i -  Vi ~ n~ds. (16) @ = I'loV~nids + 

Substituting Eqs. ( 9 ) ,  (10) and (12) into Eq. (16) and assuming that the pressure at the 

boundary of the element is zero, one can derive 

o :  ff ff .,,(vi_ as  : 
So ~--a Sp 

0 0 0 2tD'o7"0 + ND~7~ - ND~o~ %,  (17) 

where %k is the permutation symbol, having the following properties: it is zero if any two of the 

three indices are equal; it has the value + 1 if ( i  , j ,  k ) is an even cyclic permutation of the 

integers ( 1 , 2 , 3 )  ; it has the value - 1 if ( i ,  j ,  k ) is an odd cyclic permutation of the integers 

( 1 , 2 , 3 ) .  And 

O i  k = - f J'Iijrt j x k d s .  (18) 
S 

P 

Inde r iv ingEq . (17 )  weused/- /~  2/z7'0i, V o 0 , = = 7'/~j on the surface of the suspension element. 

The angular velocity of the aggregate can be expressed in the following form 

to = - sin~o 0i + cosq~ 0j + ~k.  (19) 

The tensor Dq created by the linear ambient flow field 7'o and the rotational movement of the 

aggregate co i is derived in Appendix I , taking the form 
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Dq = Mi#zu176 + H q ~ k ,  (20) 

where the tensors Mqkz, H~ik, depending only on the orientation and size of the spheroid 

aggregates, are shown in Appendix ~ . Substitution of Eq. (20) into Eq. (17) gives 
__. "9 ~ 0 ~ 0  0 0 0 0 0 ~fZZqZq + ND~k)'~ - NDik eqk OOj = 2/.t~'qg/q + NMo~ff ~iu B + 

0 (21) N (  H~  k - Mq~eikj) y@ook - NHq,~ eikjook co~,. 

From Eq. ( 21 ) ,  one knows that the dissipation potential is a quadratic form of the rates yq,0 cok. 

With the aid of the interaction energy given in Eq. (8 )  and the dissipation potential given in 

Eq. (21 ) ,  we can not only establish the general constitutive relation of the system, but also 

derive the governing equations related to the microstructural evolution 0 ,  r 

3 Const i tut ive  Relat ion  of  an ER Suspens ion  

3.1 General formulation of the internal variable theory 
It is a wen-known fact that the thermodynamic state of an ER suspension at a given time is 

0 but also depends on the not only a function of the instantaneous value of the strain rate yq ,  

previous history of u The investigation on the thermodynamic state may be dealt with in various tj" 

manners. One effective method is the "internal variable theory" (Rice ,  19711143; Ziegler, 

1983 [lsl ) .  To completely define a thermodynamic state of a suspension, one needs to introduce 

some internal variables that describe the microstructural change of the material during loading, 

besides identifying the instantaneous strain rate. In such way,  the dependence of the material 

response on loading history can be replaced by a dependence on what it has produced. Namely, 

the current pattern of structural arrangement on the mieroscale of the material element is 

represented by the current value of internal variables. When the internal variables are fixed, the 
0 response of the material only depends on the instantaneous value of the strain rate yq.  But 

generally speaking, the values of the internal variables depend on the loading history. The 

internal variable theory is based on the fundamental principle of thermodynamics. In its 

framework, one can not only establish the relation between the stress and strain, but also derive 

the evolution equation of the microstructures. Consider a unit volume element of an ER 

suspension, its state variables are denoted as the strain tensor r/q, absolute temperature T and a 

group of internal variables ~9 k . In other words, the variables ~?q, ~9 k and T can give a complete 

description for the state of the system. The first fundamental law of thermodynamics can be 

expressed in the following form: 

dW = dU - d Q ,  (22) 

where U is the internal energy of the system, d W is the elementary work done on the system and 

d Q is the heat supply to the system. 

The second fundamental law of thermodynamics states that there exists a state function 

S ( r/q, tgk, T ) ,  called entropy, such that 

T d S  >~ d Q .  (23) 

If  Eq. (23) holds with the equality sign, the process is referred to as reversible, otherwise as 

irreversible. The entropy can be written in the following form: 

dS = d (r) S + d (~)S, (24) 
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where 

d ( ')S = d Q / T  (25) 

is the reversible increment of S ,  called the entropy supply from outside, whereas 

d (i) S ~> 0 (26) 

is the irreversible increment, referred to the entropy production inside the system. The 

combination of Eqs. (22 ) ,  (23) and (24) leads to 

d W  = d U - d Q  = d U -  Td(r) s = d U -  TdS + Td(~) S .  (27) 

I f  the applied stress field on the material element is denoted as rij, the elementary work done on 

the system can be written as 

dW = rljd~/q. (28) 

On account of the fact that U and S are state functions, Eq. (28) can be replaced by the relation 

Tijd?]i j : ~ - r dl]iJ q- ~k - T ~kk dL~k q- 

O S ] d T  (~- Tff~] + Td(i)S. (29) 

For pure heating case, Eq. (29) is reduced to 

( 3 U / 3 T -  T O S / 3 T ) d T  + Td(~)S = 0. (30) 

The second term is non-negative, whereas the quantity inside the parentheses is a state function 

and hence is independent o f d T .  Since Eq. (30) must hold for both positive and negative values 

of d T,  we have 

O U / O T -  T 3 S / O T  = 0. (31) 

It is noted that the above result is generally valid and independent of the type of process even 

though we have obtained it by considering a special process. Eq. (29)  can be simplified if we 

introduce another state function, the so-called'free energy of the system, defined by 

S = U -  TS. (32) 

Then 

3 ~  _ 3 ~  Td(i ) rljdT/q -- ff~qdT//j + ~ d 0 k  + S. (33) 

As mentioned by Ziegler (1983) [15] , the term Td(i)s has the form of an elementary work, and 

can be expressed in the following form: 

Td(i)S = Aijdrli j + BkdLgk. (34) 

Substitution of Eq. (34) into Eq. (33) gives 

rijdr]i i = ~ + Aq dr]i j + ff~k + Bk d0~. (35) 

Since r/0., Ok are independent state variables, the above equation implies 

r~ = 3E/3rlq  + A~, (36) 

3 ~ / 9 0  k + Bk = 0. (37) 

In fact, Eq. (36 )  is the constitutive relation of the material, and Eq . (37 )  can be used to 

determine the values of the internal variables. 
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We now rewrite Eq. (34) by replacing the differentials by time derivatives as follows 

= Z~y ~ + B ~ k ,  (38) 

where ~ is the dissipation function which is the rate of work done by the dissipative forces. 

Eq. (38) cannot determine the dissipative force, the tensor A 0. and vector B k even if we know the 

dissipation function. It determines their magnitude once the direction, i . e . ,  the ratio of the 

components, is known. To determine Aij and Bk, we introduce the following orthogonality 
0 condition: the dissipative force corresponding to the velocity 7ii or ~9 k is orthogonal to the 

dissipation surface ~ = ~b 0 in the end point. Therefore, one can obtain 

~ 0 ~  (39) A i / =  210yq0, Bk = AzO0 k '  

where A1, A2 are proportional factors determined 'on account of Eq. (38) by 

)tl = ~'ij) ~ ,  A2 = Ok ~ .  (40) 

Since we have derived that ~ is a quadratic function of the velocities, Eq. (40) yields 

21 = )t2 = 1/2.  (41) 

As the strain and strain rate are symmetric tensors, substitution of Eqs . (39)  and (41 )  into 

Eqs. (36) and (37) yields 

1( o 
r lj = ~ + O rlii ] + 0 7 i~ 

0 2  1 0 ~  

It is worth noticing that as discussed by Ziegler (1983)  [15] 

equivalent to the principle of maximal dissipation rate. 

3.2  Cons t i t u t ive  e q u a t i o n  

3 .2 .1  

+ , (42) 

(43) 

, the orthogonality condition is 

The constitutive equation of an ER suspension before yielding 

+ + + + + 

?/5 
+ + + 

Fig. 1 Schematic of ER structure 

at the initial stage 

Experimental data reveal that when the 

applied shear stress is smaller than the yielding 

strength of an ER suspension, the ER suspension 

behaves like an ordinary solid material, its swain 

increases almost linearly with the applied stress. 

An identifying characteristic of ER suspensions 

under such a static condition is that upon 

application of an electric field, the particles align 

into a chain-like structure along the direction of 

the field. Under the action of an applied shear 

loading, the fibril aggregates of the particles will 

keep intact, but they will rotate slightly as shown 

in Fig. 1. In this stage, we further assume that there is no slipping between the electrodes and the 

induced ER structures. Under such conditions, the tilt angle of the droplets is directly related with 

the applied strain. If the applied shear strain is 7/x 3 = ~731, one can find 
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27713 = 7/13 + r]3: = tan0 ~ 0. (44)  

By substituting them into Eq. ( 8 ) ,  the interaction energy of the system is given as follows: 

g," = _ 0 . 5 ~ ( a  p - a ~ ) a o ( E ~  - r + ~A.~) - z  - 

[ A , ( 1  - ~ + ~A,) -2 - Ay(1 - ~ + ~ A y ) - z J ( v I 3  + 713]) }. (45)  

For isothermal process,  one can write 

0 ~ / 0  7/~j = 0 ~ / 0  ~?o" (46)  

The shear stress can be derived by using Eq. (42)  and neglecting the dissipation terms as follows: 

= - -  + = 2 ~ a 0 ( a  p - a f ) ( E ~  z • r 1 3  = 2 G  ~ r]] 3 p 7113 

[A~(1 - ~ + ~A,) -z - Ay(1 - r + ~ A y )  - z ]  rh3,  (47)  

where the effective shear modulus is given by 

G ~ -- ~ a 0 ( a  p -  a f ) ( E ~  - (~ + (~A,~) -2 - At(1  - ~ + ~ a y ) - 2 ] .  (48)  

I f  the dielectric permittivity of  the particles does not approach infinity, i . e . ,  they are not 

conductors, the fibril aggregates can be assumed to be cylindrical dielectrics, therefore the 

depolarizing factors are r~ = 0 ,  ny = n~ = 1 /2 .  Therefore,  the effective shear modulus is given 

by 

G" = ~cr0(a p -  a f ) ( E ~  - -24 f _ _ [  a P -  a f )  -2] 
a p + af  ~ 1 -  ~ a p + a~ . (48 ) '  

If  the ~'ctric permittivity of  the particles does approach infinity, the aggregates cannot be 

assumed to be  infinite long cylinders as assumed in deriving Eq.  ( 4 8 ) ' ,  in such case ,  Eq.  (48)  

should also give reasonable results. 

From F_x t . ( 4 7 ) ,  it is very clear that at the 

initial s tage,  the ER suspensions behave as an 

ordinary elastic material with the shear modulus 

given by E q . ( 4 8 ) .  However ,  it should be 

mentioned that this result is based on the 

assumption that the tilt angle is very small ,  as 

given by Eq. ( 4 4 ) ,  and the droplets will not slip 

on the electrodes. When the applied shear strain 

reaches its critical value r/~3, the droplets cannot 

keep intact. The corresponding shear stress given 

by Eq.  (47)  is the static yielding stress of  the ER 

system. 

The experimental data obtained by Ginder 

- -  theoretical prediction by eqtmiion (47) 1 

~ 3o 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

the electric field/~/kV/mm 

Fig.2 The shear modulus versus the 

applied electric field 

and Davis (1993)  [20] are used to verify our theoretical prediction. The model  fluids utilized in 

their study were composed of  barium titanate particles having the relative permittivity a p = 2 000,  

suspended at volume fractions ~ = 0 . 2  in dodecane having the relative permittivity a f = 2.  The 

permittivity of  free space is a0 = 8 .854  17 x 10 -1~ F / re .  The shear modulus versus the applied 

electric field is shown in Fig.  2 .  The predicted shear modulus is slightly lower than the 

experimental data in the barium titanate system. This departure may be due to the strong image 
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effect of the electrodes. 

3 . 2 . 2  The constitutive relation after yielding 

In the dynamic regime after yielding, the behavior of an ER suspension is often 

approximated by a Bingham solid, i . e .  

r = r r + /z ~70 , (49) 

where r r is the yielding stress of the system, and /z " is the viscosity of the suspension. 

Experimental data revealed that most ER suspensions showed a shear-thinning viscosity, i . e .  the 

viscosity of the suspension decreases with increasing shear rate. Klingenberg and Zukoski 

(1990) [6] suggested that this shear-thinning behavior was due to the formation of condensed 

boundary layers near the electrodes, so that the velocity gradients appeared only on a portion of 

the sample. Halsey et al. (1992) [3' 43 assumed that the size and orientation of the aggregates 

would adjust with the flow field, and predicted that the shear-thinning effect was due to the bulk 

properties of the fluid. Shulman et al. (1986)[21] considered the similar problem for 

magnetorheological suspensions. 

In this paper, the size parameters a and c ,  and the orientation of the aggregates 0,  and q) are 

denoted as the internal variables for the system. When they are fixed, the material becomes an 

ordinary suspension. That means, if the internal variables are given at an instant time, the 

response of the system depends only on the instantaneous value of the strain rate, not on its 

history. In fact, the effect of the loading history has been considered by the values of the internal 

variables. Furthermore we do not consider the existence of currents or of interracial polarization 

due to a non-zero conductivity of the solid or of the liquid phase. These conditions apply 

principally to the category of ER fluids based on a large electronic polarizability of the constituent 

particles and acted on by electric fields whose frequency is high enough to neglect ionic 

polarization and charge accumulation on the electrodes. Substituting Eq. (21) into Eq. (42) ,  we 

have 

r.,~ = r Y  + 0 .5(3gr /aTlm.  + 3al t /ar l .~)  + 0 . 2 5 ( 8 q b / 8 u 1 7 6  + 3 ~ / 0 7 . ~ ) ~  = 

r Y .  + - # 7 . , .  "~ o + O . 2 5 N ( M . . ~ p  + M..~B + M . ~ .  + M.p .s )  7~ + 

0 .25N[  H.~.k + H..,k - (Mo,,,. + Miinra)~ikjJwk, (50) 
where rY. is the static yielding stress. In deriving Eq. ( 5 0 ) ,  one should notice that the interaction 

energy is independent with the applied strain in the dynamic regime. Eq. (50) gives a general 

constitutive relation for an ER suspension, it is suitable even for the transient stage when the 

orientation of the aggregates is changing with time. Once the suspension reaches the steady state 

where the size and orientation of the aggregates do not vary with time any more, the last term in 

Eq. (50) becomes zero, therefore 

,~ o 0 . 2 5 N ( M , ~ , ~  + M.m~p + M,r + M ~ . . , ) 7 , r  = rm,~ = r y  + ~tzTzn + o 

- -  0 rY. + 2/O'0m. + (~M=.~ff.p, (51) 

where (16/3)=acZM.,..B = M.~=# + M.=.B + Map=. + M.p.=, ~ is the volume fraction of the 

particles. 

3 .2 .3  Determination of the internal variables 0, 9p, a ,  c 

Since the tensors Mijj, t ,  Hi~, are functions of the size and orientation of aggregates, one needs 

first to determine how these internal variables change with the external condition. By using 
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Eq. (41) ,  the evolution equations for 0,  ~ are derived as 

a q , ' l a O  = - 0 . 5 0 q , / a 0 ,  (52)  

o ~ / o  ~ = _ 0 . 5 0  ~ / o ~ .  ( 5 3 )  

Eqs. (52) and (53) jointly give the first-order differential equation system which can be used to 

determine 0 ( t ) ,  q~ ( t ) under the given initial condition, the applied strain rate u and the electric 

field. By using Eq. (8 ) ,  we can have 

Sgt  ~ ~ p 
- 9 ~  = - 7 ~'~ - ' ~ f ) ' ~ ~ 1 7 6  (1  - r + r  - & ( 1  - ~ + ~A~)-2] ,  (54)  

0gt  
8~ = 0 .  

And using Eqs. (21) and (19) ,  one can obtain 

9~/a0 A(0~o zx~%~, 9 ~ / ~  A~fr~ + 4 , ~  (55) 

where 
A(O) .~.Z = Neosso(H.~z- Mija~ei2j) - Nsinq~(H./n - M ~ e i l j ) ,  

A ~  ) = N(Hoz3 - M~j.~e~3i), 

A~ ~ = Nsin~v(Hql e~kj + Hq~e~ u)  - Neossv(Ho~e~j + Ho'kei~i), (56) 

A~> = _ N(  H,j~ ~,~j + H~ ~,~). 
Substituting Eqs. (54) and (55) into Eqs. (52) and (53) ,  tile first-order differential equations for 

0, q) are thus established as 

i (A[~) sinq~ _ Ai~)cosq~) 0 A(~).~ a(~>~,o - 3 ~ - ~ ~,,# = 23alr/Oq~, 

[(Al0)sinq~ A(0)cosSv)0 ^(0).;, a(O),,0 = 28aF/30"  (57) 
- '--'3 5 ~ - ~ a / ~  / a , 8  

As we discussed before, one needs to solve the differential Eq. (57) for a given loading history to 

determine the value of the internal variables. 

To derive the equilibrium size of the spheroidal aggregate, Halsey (1992) [3] divided the 

polarization energy into two parts, the first is the depolarization energy as given by Eq. (8 ) ,  and 

the second part is the surface energy of the droplet. Balancing these two effects, he obtained the 

dependence of tile size on the Mason number. As z~ 

mentioned by Halsey (1992) [41 , the surface tension is a 2 ~ -  

somewhat subtle effect, it also arises from the dipolar 

interactions as the bulk depolarization energy. The . / 

surface energy is specially a dipolar lattice effect. In our Y 

formulation, by considering that every particle attached 

to the aggregates should keep in equilibrium under the 

action of the hydrodynamic force and electrostatic force, 

it seems more appropriate to establish the force 

equilibrium equation to determine the length of the 

aggregate. Consider a spheroidal aggregate in the ER Fig.3 Schematic of the interactions 

suspension, on the tip of it, a spherical particle exists as between the spheroidal drop- 

shown in Fig. 3. When the system reaches its steady let and the particle 
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state, all the forces on particles in the aggregates should keep in equilibrium, i . e . ,  the 

electrostatic force and the hydrodynamic force acting on the particle should be balanced with each 

other. For a small spherical particle, we can assume the local electric f'leld E ~ acting on it is 

uniform. Therefore the electric dipole moment of the dielectric particle can be determined by 

using Eq. (4)  with n~ = ny = n z = 1/3 for spherical particle as follows : 

P = P~E ~, (58) 

where 

P~ 4 ~ a f ( a P -  af) r3o (59) 
= ap + 2a f a0 , 

and r 0 is the radius of the particle. The electrostatic force on the particle can be obtained by 

calculating the external force on the electric dipole sitting at the center of the particle as follows: 

F~'(a + r 0 , 0 , 0 )  = V ( P ' E e )  = P ~ V [ ( E ~ ) ' -  + 

(E~.) 2 + (E~)  2] Ix . . . .  0 , r=z=0,  (60) 

in which the local electric field outside the spheroidal dielectrics is given in Appendix lI . 

To determine the hydrodynamic force acting on the particle, we need to derive the local fluid 

velocity V L around the particle, which is given in Appendix m .  The hydrodynamic force on the 

particle is given by the Stokes resistance 

F h ( a  + r0 ,0 ,0 )  = 6~r,uroVL(a + r 0 , 0 , 0 ) .  (61) 

Generally speaking, the length of the aggregates is very sensitive to the applied electric field and 

strain rate. Whereas their perpendicular size is comparatively stable. Therefore we can fix the size 

parameter c ,  by balancing the force along the symmetric axis X to determine the length 

F ~ ( a  + r0 ,0 ,0 )  + F ~ ( a  + r0 , 0 , 0 )  = 0. (62) 

In fact, to obtain the constitutive relation given in Eq. (51 ) ,  we need to know the aspect ratio 

a / c  only. Through the calculation, it is found that the aspect ratio of the aggregates is 

independent on the selected size c.  If  one consider that the hydrodynamic force are transmitted 

from one particle to the other through lubrication zones between the particles, the maximum 

hydrodynamic force between the particles occurs at the center of the aggregate. But through the 

calculation, we found that balancing the force on the particle at the tip or at the center of the 

aggregate gave quite similar result for determining the size of the aggregate. 

By solving the simultaneous Eqs. (57) and (62 ) ,  the internal variables a ,  c ,  0,  ~ can be 

obtained as the function of the applied strain rate and the electric field. When the system reaches 

the steady state, t9, p become zero. After solving a ,  c ,  0,  9 ,  and substituting these values into 

the expression of Mijkl, then with Eq. (51 ) ,  the nonlinear constitutive relation is thus established. 

4 The Constitutive Equation of an ER Suspension Under Simple Shear 
Loading 

As an example in a special case, in this section we focus our attention on simple shear 

loading condition. The applied swain rate is u = 7 ~ �9 Since the symmetry axis is in the x-z 

plane, one can write q9 = O, while the unit directional vector d along the symmetry axis is 

expressed in the form of 
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d = { s i n 0 , 0 , c o s 0 } ,  (63) 

By substituting Eq. (63) into the expressions of Miikt, H~ik in Eqs. (A2)  and ( A 6 ) ,  then further 

into Eq. ( 57 ) ,  it is found that 

_- 0 ,  ( 6 4 )  

A ( ~  = 1 2 ~ Y H ( a / c ) 2 7 ~  + ~ a o ( a  p -  a f ) ( E ~  - 

+ r -2 - a , ( 1  - r + r  = Gcos20 + F s i n 2 0 ,  (65) 

where  

F = (~(a p - a f ) a o ( E ~  - ~ + ~Ay) -2 - A,(1 - r + r  

G = 12n/~r176 a / c ) Z ,  (66) 

_ -  r c, 

and yH, yc is determined by Eqs. (A4) and ( A 7 ) .  

Eq. (64) means that for such a shear loading, the symmetry axis of the aggregate rotates 

only in the plane xoz if initially q~ = 0. Eq. (65) gives the solution of the rotational angle as a 

function of time t for given electric field E ~ and shear strain rate field 7 ~ 13 a s  follows: 

1 G'- t a n O =  ~ [ F  + ~/ + F a t a n h ( z ) ] ,  

~/  GZ + F 2 - F 
Z - ^(0) t + arctanh a/_ ~ '-"2 + FZ. (67) 

i 

When time t approaches inf'mity, Z ~ ~ , tanh ( Z )  ~ 1. Therefore the tilt angle reaches the 

steady value for the given condition, which can be determined by setting 0 = 0,  or 

tan20~q = -  G / F .  (68) 

The rotational angle as a function of non-dimensional time t ~ = t?'~3 for different Mason number 

Mn which gives the ratio of hydrodynamic force to polarization force M n  = , u Y t 3 / [ a o ( a  p - 

d ) (  E~ is shown in F ig .4 .  

x .  

.,7: 

0.8 

0.6 

[ ~ /  i - M n  =0.002 1 , a / c  = 10 - 
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By substituting F_q. (68) into Eq. (62) ,  and solving Eq. (62) numerically, one can obtain 

the equilibrium length a of the aggregate for a given value of c. As said before, the obtained 

aspect ratio a / c  is independent of the value of e. The result of a / c  versus the Mason number is 

depicted in Fig .5 .  From the log-log plot, we found that a / e  or (Mn)-o .48.  Using the molecular- 

like dynamics simulation, Taklmoto (1992) E2~] also revealed such a power-law relation and the 

apparent exponent was approximately equal to - 0 .5 .  Through balancing the depolarization 

energy of a spheroidal droplet with its surface energy, Halsey et al. (1992) [3' 43 obtained that 

a / e  ~: Mrt -~ , and the exponent v = 1/3.  
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By substituting the equilibrium values of the rotational angle and the aspect ratio into the 

expression of M/jkz in Eq. ( A 2 ) ,  then into Eq. (51 ) ,  we obtain the stress and strain rate relation 

under simple shear loading condition as 

5 3 0 M ~'130 = Z'13Y + 2/z703 + _~GuNa T13[(3 X + ZM)sin220e q + 4YMcos220r = 

v13 + 2'u)q~ + 4 G 2 + F 2 [(3XM + ZM)GZ + 4yMF21 = 

Y ~ 
r13 + 2~ u176 (69) 

where the viscosity ,u * of the ER suspension is given by 

5 
~,UF2 ( a~2~')[(3xM + Z M) G 2 + e Y M F  2] (70) /~ = /~+ 8 G 2 +  

where X M, yM, zM are dependent only on the aspect ratio, and are given by Eq. ( A 4 ) .  As 

shown in Eq. (66) the functions G and F and the aspect ratio a / c  depend on the strain rate ~,0 13 

and the applied electric field (E~  2 . Therefore Eq. (70) predicts a shear-thinning viscosity of the 

ER suspension. By substituting the obtained aspect ratio into Eq. ( 7 0 ) ,  one can find the variation 

of the reduced suspension viscosity (/z * -/_t ) / / z  with the Mason number Mn.  The relationship is 

plotted in log-log scale in Fig.6.  From the figure, it can be found that the suspension viscosity 

can be well approximated by a power function ~ ( M n ) - a  with the shear-thinning exponent of 
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A ~ 0 . 8 2 .  Rheological measurements by Halsey et al. (1992)[3] on a model fluid consisting of  

monodisperse silica spheres immersed in a dielectric liquid showed a power-law dependence 

fz * oc ( M n )  -~ of  the apparent viscosity on the Mason number with A = 0 .68  - 0 . 9 3 .  

5 Concluding Remarks 

In this paper,  a microstructural constitutive theory of  ER suspensions was formulated. The 

framework was based on the internal variable theory and the mechanism analysis. The ER 

suspension consists of  fine particles with high dielectric constant and the supporting fluid. Under 

the action of  the electric field, the polarized particles will aggregate together to form the chain- 

like structures along the direction of  the electric field. The size and orientation of  the particle 

aggregates are volatile. They will adjust according to the applied electric field and strain rate. 

Therefore, a model was established to determine the size and orientation of  the aggregates. Then 

a three-dimensional, explicit form of  the constitutive equation was derived based on the 

interaction energy and the dissipation function of  the system. The response of  the system under 

the action of  a simple shearing load was considered and discussed in detail. It is found 

that the shear-thinning viscosity of  an ER suspension can be well approximated by the power-law 

oc ( M n )  -~ Since the evolution equation of  the aggregate orientation is a loading history 

dependent differential equation, after solving it for a given loading history, one can predict the 

constitutive behavior of  the ER suspension for the loading history. 
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A p p e n d i x  ] The  der iva t ion  of the  t ensor  D 

0 and rota- The stress field on the surface of the aggregate is created by the linear ambient flow field 7 0, 

tional movement of the aggregate o~. For a steady creeping flow considered in this paper, the stress tensor 

can be obtained by summing up the two microhydrodynamic solutions. We can express the tensor D~ as fol- 

lows: 
1 1) The force dipole D/j for linear ambient flow 

The force dipole ~ " D ~ 1s defined as follows: 

where H~, is the stress field on the surface of the aggregation created by the linear ambient flow. For ellip- 

soidal inclusion, the three fundamental problems--translation, rotation, and linear ambient field were 
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solved in the papers of Oberbeck, Edwardes, and Jeffery. For a prolate spheroid aggregate ( a > b = c ) ,  

denoting the unit directional vector along the symmetry axis by d ,  D~ can be expressed in the form as (Kim 

and Karrila, 1991) [23] 

D~i = MijktYkz = 3 M (o) vMa(t) 7Ma(2) u 

where 
.(0) a~t = 1 . 5 ( d , d j -  aO/3 ) ( d l , d  t -  akt /3) ,  

dl~,~ 0 . 5 (  di~izd k + diS~d k + d,81kd z + dfli~d, - 4 d , d i d k d z ) ,  (A3) 

. (2 )  0.5(~aSjz + Sjk~a - ~ u  + didj~kt + dkdz~o - didk~jz d J ~ i z  a ok t - _ 

I 
t "  = - e'E(1 + - Z e l - ' ,  X = 8 'E(3 - - 

4 j [ 2 e ( 1  - 2 e  ~) - (1 - e Z ) L ] { E Z e ( Z e  2 -  3) + 3 ( 1 -  e2) L ] [ ( 1  + e 2 ) L -  yM 2 e ] }  -I , 

l n /1  + e l ,  Z M 1-~6eS(1 - eZ)[3(1 - e 2 ) 2 L  - 2e(3  ' 5e~)] -~, t 
3 

(A4) 

in which e = ( a  ~ - c 2 ) W 2 / a  is the eccentricity of the generating elfipse. 

2) The force dipole /3 (2) for rotational motion of the spheroid aggregate 

D(Z) is defined as 

where/7~ ) is the stress field created by the rotational motion of the aggregate. Using the solution for 

, /9 (2) in following form (Kim and Karti/a, 1991 )[23] spheroidal inclusion one can express the tensor _~ 

D ( 2 )  {4;tlza36i~EXCdadlt + y c ( 3 ~  dkdo) ] 4=,ua3yn(e~f l j  + e j u d , ) d z } w k ,  (A6) = Ho~oJk = - _ 

where 

= 4 e 3 ( 1  - e Z ) [ 2 e  - (1 - X c e2) L~-17 

yC = 3 e 3 ( 1  _ e2)[(1 + e 2 ) L  _ 2e] -1 .  (A7) 

Appendix 1[ The electric f ield outside a dielectric spheroid under uniform exter. 
n a l  f i e l d  

In the book of Landau et al. (1984) [16J, the field potential outside an uncharged conducting spheroid 

was expressed in explicit form. Following the similar procedure, we can derive the electric field potential 

outside a dielectric spheroid under uniform external field in explicit form as follows. In the local coordinate 

system (X ,  Y, Z)  with the X-axis along the symmetry axis of the spheroid, the external electric field is 

denoted as { E ~ , E ~ , E ~ } .  The electric field potential outside the spheroid can be expressed in the fol- 

lowing form 

r176 = r + r + r (A8)  

where 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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